
An interesting special characteristic of the solidification process under consideration 
is the fact that the region 3 appears in the form of a sharp edge. This can be seen from 
the expression y, = -~2d* (82 + sBz + ...), differentiating which with respect to x we will 

dy, a'O " ~'g__ have :=--~ , i.e., the angle between a tangent to the surface and the x axis has a 

finite value. 

It must also be added that the formulas obtained (5.5) (U = U S ) are valid also in the 
case where there is a velocity of the external flow. Under these circumstances, the effect 
of the value and direction of the velocity will appear through the value of q~(0). If we 
set Prg = i, from the Crocco integral [7], we can obtain 

q o - - ~ - - ~  t - -  r s /  then qo(O)--~g U--Uo~ ~ss " 

This value can serve for an evaluation of the effect of the velocity of the flow and 
the temperature of the external medium on the solidification process. 
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TRANSONIC FLOWS OF GAS IN LAVAL NOZZLES WITH LOGARITHMIC SPECIAL 

FEATURES IN THEIR LIMITING CHARACTERISTICS 

A. L. Brezhnev UDC 533o6.011 

In flat Laval nozzles there are three types of asymptotic flows in the neighborhood of 
the center [i]. This conclusion was reached using the theorem of Brio and Buke [2] with 
respect to the behavior, near a singular point (image of the limiting characteristic), of 
the general integral of the ordinary differential equation to which a study of self-similar 
transonic flows reduced. It has been found that, with some values of the index of the self- 
similarity, any given integral curve can be analytically prolonged through this singular 
point, which is a mesh point in the problem of nozzle flows, With the consideration of flows 
in nozzles with a round transverse cross section, it is useful to consider the same indices 
which are considered in the theorem. It is well known [3] that, in this case, there is a 
second possible alternative: None of the integral curves passing through the mesh point, 
with the exception of an isolated whisker, yield an analytica ! continuation. This re]ates 
also to a whisker of general direction. In other words, a whisker of general direction 
holds out the possibility of an analytical prolongation with any given self-similarity index, 
with the exception of those considered in the theorem. In [4], a second asymptotic type of 
flow in the neighborhood of the center of an axisymmetric nozzle is constructed numerically 
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using a whisker of general direction. However, as a result of the calculations, an index n* = 
2.36532 (xr -n is an invariant of the self-similar solution) was obtained, which is close to 

nl = 2.36589, i.e., to one of those considered in the theorem. We note that the coincidence 
n* = nl signifies the impossibility of the second asymptotic type of flow in the neighborhood 
of the center of an axisymmetric nozzle. Moreover, with values of n close to n~, the method 
used in [4] of starting from a singular point using a power series is incorrect, since all 
the coefficients, starting from some arbitrary one, tend to infinity with n + nl. It is 
obvious that, in axisymmetrical Laval nozzles, only flows with weak discontinuities at the 
corresponding limiting characteristics can exist, if the self-similarity index n varies in 
the interval 2 < n < ~. The indices nl, n2, n3, to which the theorem reduces in the case 
of axisymmetrical nozzles, areconsidered below. Along a characteristic arriving at the cen- 
ter of the nozzle, there is propagated a logarithmic discontinuity in the derivatives of the 
components of the velocity along the coordinates (with n = n~, there is a discontinuity at 
three, with n = n2 at four, and with n = n3 at five derivatives). After reflection of the 
singularity from the center of the nozzle, in the case n = nl there arises a weak discon- 
tinuity at the departing limiting characteristic; in the case n = n2, there is a limiting 
line, not eliminated by a jump in the density; in the case n = n3 there arises a shock wave. 

i. Asixymmetric flows of gas in a near-sonic approximation are described by the Cauchy 
equation 

(1.1) 

where x, r are cylindrical coordinates; ~ is the potential of the perturbations of a homogene- 
ous sonic flow. For investigation of flows in Laval flows with a round transverse cross 
section, we consider the Cauchy problem: Find the solution of Eq. (i.i) satisfying the follow- 
ing conditions at the axis of symmetry r = 0: 

(p~ = - - A ~  Ixl '~ (x < 0); q~ = A.,x k (x > 0), A, > O, A= > O. (1.2) 

If a shock wave arises in the flow, the solution must satisfy the additional conditions 
at the wave front 

q h  = r 2 [ d x ( r ) / d r ] "  = q)o~l - t -qJx~ ,  

where the subscripts relate to the parameters of the gas on different sides of the front; x = 
x(r) is the equation of the shock wave. 

The Cauchy problem (i.i), (1.2) with 1 < k < 2 was investigated in [4]. We shall 
consider below the corresponding solution with 

k = kt = (7 + 2 .211/~ ) /14  = 1.15465, 
k = k~ = (26 + 2 5 . 2 1 / 2  ) /4 i  = 1.49647, (1.3) 

k =  k ~ =  (7 ~ 9 1 1 t  2 ) 3 / 2 8 =  1.77208, 

where, at the limiting characteristic C~, arriving at the center of the nozzle, there arises 
a logarithmic singularity in the higher derivatives of the components of the velocity along 
the coordinates. 

2. The Cauchy problem (i.i), (1.2) has the self-similar solution 

== r:~"-"q($), ~ = x t  ..... , n = 2/(2 - -  k); 

here the equation of the shock front has the form ~ -- const. 

The function q(~) satisfies the ordinary differential equation 

(n2~  "" - -  q ' ) q "  - -  n~(5n - -  4)q '  + (3n - -  2)2q = O. (2.1) 

To construct the flow in the inlet part of the nozzle between the semiaxis x < 0 and 
the characteristic C~, we must use the integral curve of Eq. (2.1) (we denote it by S), which, 
in the neighborhood of the point ~ = _~o, is described by the expansion [3] 

508 



q = ~ d~l ~ I (a'~-~-' 'O/', do = nA, / (3n  - -  2), 
i=0 

= 9 i)/(4nai ~ ~_~ ( 3 n -  '2 - -  d~ ( - - . n  + 1 + - -  2 ] ) (3n  2~ + 2]) dfl~_~_~. 
)=0 

( 2 . 2 )  

The expansion (2.2) determines the curve S from the point ~ = -~ up to some singular point 
~c, corresponding to a limiting characteristic. The point ~c is determined by the equal- 
ities 

n~'~ - -  q' (~c) =: 0, n~c (5n --  4) q' (~e) = (3n - - 2 )  q ($c) 

and, with 1 < k < 2 (2 < n < ~), is a mesh point. 

We write the general integral of Eq. (2.1) in the neighborhood of ~c in the form 

E 

q : = _ ~  ~ �9 ., 
i:=O 

= ( t . 4 n -  8)/(7n - -  -~ - -  B), 1{ = (25n ~ - -  56n -{- 32) t / ' ,  

( 2 . 3 )  

where ~ is the power exponent of the first term of the nonregular part; 
whole number, not exceeding ~; a~ is an arbitrary constant; the coefficients ai 
have the form (~ # 4, 5, 6) 

a o = a  a ( 5 n - 4 ) ( 3 n - 2 )  -~, a ~ = n  ~, a ~ = ( 4 - - 3 n + R )  n/4 ,  
i - 1  

a.~::A~/B~, A ~ = - - a ~ _ ~ l n ( i - - ~ ) - l - 2 l ~ - l - ( i / 2 )  ~ ]( i  + 2 - - ] ) a ~ a ~ _ ~ ,  
)=a 

B~ = (ni/2)(7n - -  4 - -  B)( i  - -  ~), 3 <~ i <.~ E. 

E is the greatest 
(0~ i~ E) 

(2.4) 

If k takes on the values (1.3), then, the values of n and ~ are equal, respectively, 

n =  n 1 = (2i + 2 , 2 t ' / ~ ) / 5 1 ,  ~ = ~ ,  

n = n,, = (56 + 25.21/ '  )/23, ~ := 5, 

n = na = (35 + 3 .9 i l /~  )4/29, ,u = 6. 

t O  

Then, the coefficients a4, a s ,  a6  correspondingly revert to infinity; 
ing logarithmic terms must enter into the expansion (2.3): 

g--1 1 

q ~ a ~ - i h i  
i=0  i=o 

• ~ra-~t-iAu+i + 0  [A ~t+2 ( ln]  A l) =1 

~ t :  4, 5, 6, 

where ai(O~i~ > -- i) are determined by formulas (2.4); a~ 
remaining coefficients have the form 

therefore, the follow- 

(2.5) 

is an arbitrary constant; the 

b.  = A, / (Tn" - -  4n), b~+l = {--bp.(n~t - -  3n + 2) 2 + 

+ 3~(~t - / l )aab~}, /B~+l ,  %+1 = {A~+l - -  bu[4n + 

+ 2n~(~ - -  3) - -  3(2~t + t )%]  - -  nb~+l(t4n ~ 8 - -  R)}/Bw~ q. 

W i t h  5 > 5 c -  O, t h e  c u r v e  S i s  d e s c r i b e d  b y  t h e  e x p a n s i o n  ( 2 . 5 ) ,  w h e r e  a~  i s  a c o n -  
c r e t e  n u m b e r ,  p r e v i o u s l y  unknown (~ = 4 ,  5 ,  6 ) .  To d e t e r m i n e  t h i s  n u m b e r ,  Eq.  ( 2 . 1 )  was  
i n t e g r a t e d  f r o m  t h e  p o i n t  ~ = - -~ ,  w i t h  t h e  , i n i t i a l  d a t a  ( 2 . 2 ) ,  t o  t h e  p o i n t  ~ = ~c .  C a l c u -  
l a t i o n s  c a r r i e d  o u t  i n  an  M220M d i g i t a l  c o m p u t e r  show t h a t  t h e  c u r v e  S c o r r e s p o n d s  t o  t h e  
v a l u e s  

= 4, arL = 2.73; ~ = 5, a~ = - -0 ,0298;  ( 2 . 6 )  

= 6, a~ - - -0 ,00811.  
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3. With ~ > ~c, we denote by S the  i n t e g r a l  curve  o f  Eq. ( 2 . 1 ) ,  wh ich ,  w i t h  % § ~c + 0, 
i s  de te rm ined  by the  expans ion  (2~ w i t h  the va lue  o f  the c o e f f i c i e n t  g i ven  i n  (2~176 For 
p r o l o n g a t i o n  o f  the f l o w  beyond the  c h a r a c t e r i s t i c  Co, we s h a l l  use the  curve  S. 

Up to the l i m i t i n g  c h a r a c t e r i s t i c  Co, i n  a l l  t h r e e  cases (1 ;3 )  the f l o w  i s  a c c e l e r a t e d ,  
passing through the speed of sound, and is then decelerated, remaining supersonic. Beyond 
the limiting characteristic, the behavior of the flows is different. 

With k = 1.15465, the flow at first continues to be slowed, and then is accelerated; 
here, A2 = 0.532AI. The behavior of the function q'(~), characterizing the change in the 
longitudinal component along the straight line r = const, is close to that illustrated in 
Fig. 43 of [3]. In the calculations it was assumed that AI = 2.15465. 

With k = 1.49647, a limiting line appears in the flow, which cannot be eliminated by a 
jump in the density. With k = 1.77208, a shock wave is generated at the center of the 
nozzle; it is then carried downstream~ We note that A2 = 0.0867AI. A curve of the function 
q' is given in Fig. i. In the calculations, it was assumed that AI = 8.31623. The equation 
of the shock wave is ~ = 0.0177. 

If the flow is prolonged beyond the limiting characteristic Co, using an arbitrary in- 
tegral curve differing from S, then, in all three cases (1.3) there is the possibility of 
obtaining either continuous flows, or flows with shock waves, whose existence was demonstrated 

in [4]. 

The author wishes to express his thanks to Io A. Chernov for posing the problem. 
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